Conformal Field Theories
نویسنده
چکیده
A ‘canonical mapping’ is established between the c = −1 system of bosonic ghosts and the c = 2 complex scalar theory and, a similar mapping between the c = −2 system of fermionic ghosts and the c = 1 Dirac theory. The existence of this mapping is suggested by the identity of the characters of the respective theories. The respective c < 0 and c > 0 theories share the same space of states, whereas the spaces of conformal fields are different. Upon this mapping from their c < 0 counterparts, the (c > 0) complex scalar and the Dirac theories inherit hidden nonlocal sl(2) symmetries.
منابع مشابه
DEVELOPMENT IN STRING THEORY
The string theory is a fast moving subject, both physics wise and in the respect of mathematics. In order to keep up with the discipline it is important to move with new ideas which are being stressed. Here I wish to give extracts from new papers of ideas which I have recently found interesting. There are six papers which are involved: I ."Strings formulated directly in 4 dimensions " A. N...
متن کاملLogarithmic conformal field theories and AdS correspondence
We generalize the Maldacena correspondence to the logarithmic conformal field theories. We study the correspondence between field theories in (d+1)-dimensional AdS space and the d-dimensional logarithmic conformal field theories in the boundary of AdSd+1. Using this correspondence, we get the n-point functions of the corresponding logarithmic conformal field theory in d-dimensions.
متن کاملNew Spin - Two Gauged Sigma Models and General Conformal Field Theory
Recently, we have studied the general Virasoro construction at one loop in the background of the general non-linear sigma model. Here, we find the action formulation of these new conformal field theories when the background sigma model is itself conformal. In this case, the new conformal field theories are described by a large class of new spin-two gauged sigma models. As examples of the new ac...
متن کاملHolomorphic Chern-Simons-Witten Theory: from 2D to 4D Conformal Field Theories
It is well known that rational 2D conformal field theories are connected with Chern-Simons theories defined on 3D real manifolds. We consider holomorphic analogues of Chern-Simons theories defined on 3D complex manifolds (six real dimensions) and describe 4D conformal field theories connected with them. All these models are integrable. We describe analogues of the Virasoro and affine Lie algebr...
متن کاملGradient Flow in Logarithmic Conformal Field Theory
We establish conditions under which the worldsheet β-functions of logarithmic conformal field theories can be derived as the gradient of some scalar function on the moduli space of running coupling constants. We derive a renormalization group invariant version of this function and relate it to the usual Zamolodchikov C-function expressed in terms of correlation functions of the worldsheet energ...
متن کاملIntertwining Operator Algebras, Genus-zero Modular Functors and Genus-zero Conformal Field Theories
We describe the construction of the genus-zero parts of conformal field theories in the sense of G. Segal from representations of vertex operator algebras satisfying certain conditions. The construction is divided into four steps and each step gives a mathematical structure of independent interest. These mathematical structures are intertwining operator algebras, genus-zero modular functors, ge...
متن کامل